Giáo DụcLớp 8

Giải câu 31 bài luyện tập sgk Toán 8 tập 2 trang 23

Giải câu 31 bài luyện tập sgk Toán 8 tập 2 trang 23

Câu 31: trang 23 sgk Toán 8 tập 2

Giải các phương trình:

a) \({1 \over {x – 1}} – {{3{x^2}} \over {{x^3} – 1}} = {{2x} \over {{x^2} + x + 1}}\)

Bạn đang xem: Giải câu 31 bài luyện tập sgk Toán 8 tập 2 trang 23

b) \({3 \over {\left( {x – 1} \right)\left( {x – 2} \right)}} + {2 \over {\left( {x – 3} \right)\left( {x – 1} \right)}} = {1 \over {\left( {x – 2} \right)\left( {x – 3} \right)}}\)

c) \(1 + {1 \over {x + 2}} = {{12} \over {8 + {x^3}}}\)

d) \({{13} \over {\left( {x – 3} \right)\left( {2x + 7} \right)}} + {1 \over {2x + 7}} = {6 \over {\left( {x – 3} \right)\left( {x + 3} \right)}}\)

Lời giải chi tiết:

a) \({1 \over {x – 1}} – {{3{x^2}} \over {{x^3} – 1}} = {{2x} \over {{x^2} + x + 1}}\)  ĐKXĐ \(x \neq 1\)

\(\Leftrightarrow \frac{x^2+x+1}{(x-1)(x^2+x+1)}-\frac{3x^2}{(x-1)(x^2+x+1)}=\frac{2x(x-1)}{(x-1)(x^2+x+1)}\)

\(\Rightarrow x^2+x+1-3x^2=2x(x-1)\)

\(\Leftrightarrow  – 2{x^2} + x + 1 = 2{x^2} – 2x\)

\(\Leftrightarrow  2{x^2} +2x^2-2x- x – 1 = 0\)

\(\Leftrightarrow 4{x^2} – 3x – 1 = 0\)

\(\Leftrightarrow 4x^2-4x+x-1= 0\)

\(\Leftrightarrow 4x(x-1)+(x-1)= 0\)

\(\Leftrightarrow (4x+1)(x-1)= 0\)

\(\Leftrightarrow \left[ {\matrix{{x-1=0} \cr {4x+1=0} \cr} }\right.\)

\(\Leftrightarrow \left[ {\matrix{{x = 1} \cr {x = – {1 \over 4}} \cr} }\right.\)

\(x = 1\) không thỏa ĐKXĐ.

Vậy phương trình có nghiệm duy nhất là \(x =  – {1 \over 4}\)

b) \({3 \over {\left( {x – 1} \right)\left( {x – 2} \right)}} + {2 \over {\left( {x – 3} \right)\left( {x – 1} \right)}} = {1 \over {\left( {x – 2} \right)\left( {x – 3} \right)}}\)     ĐKXĐ \(x ≠ 1, x ≠ 2, x ≠ 3\)

\(\Leftrightarrow \frac{3(x-3)}{(x-1)(x-2)(x-3)}+\frac{2(x-2)}{(x-1)(x-2)(x-3)}=\frac{x-1}{(x-1)(x-2)(x-3)}\)

\(\Rightarrow 3(x-3)+2(x-2)=x-1\)

\(\Leftrightarrow 3x-9+2x-4-x+1=0\)

\(\Leftrightarrow 4x-12=0\)

\(\Leftrightarrow 4x=12\)

\(\Leftrightarrow x=3\)(không thỏa mãn)

Vậy phương trình vô nghiệm.

c) \(1 + {1 \over {x + 2}} = {{12} \over {8 + {x^3}}}\)     ĐKXĐ \(x ≠ -2\)

\(\Leftrightarrow \frac{8+x^3}{(x+2)(x^2-2x+4)}+\frac{x^2-2x+4}{(x+2)(x^2-2x+4)}=\frac{12}{(x+2)(x^2-2x+4)}\)

\(\Rightarrow 8+x^3+x^2-2x+4=12\)

\(\Leftrightarrow x^3+x^2-2x=0\)

\(\Leftrightarrow x\left( {{x^2} + x – 2} \right) = 0\)

\(\Leftrightarrow x\left[ {{x^2} + 2x – x – 2} \right] = 0\)

\(\Leftrightarrow x(x + 2)(x – 1) = 0\)

\(\Leftrightarrow \left[ \matrix{x=0 \hfill \cr x+2=0 \hfill \cr x-1=0 \hfill \cr} \right.\)

\(\Leftrightarrow \left[ \matrix{x=0 \hfill \cr x=-2 \hfill \cr x=1 \hfill \cr} \right.\)

Loại trường hợp \(x=-2\)vì không thỏa mãn ĐKXĐ.

Vậy phương trình có tập nghiệm là \(S = \left \{ 0;1 \right \}\)

d) \({{13} \over {\left( {x – 3} \right)\left( {2x + 7} \right)}} + {1 \over {2x + 7}} = {6 \over {\left( {x – 3} \right)\left( {x + 3} \right)}}\)   ĐKXĐ \(x \neq \pm 3,x \ne  – {7 \over 2}\)

\(\Leftrightarrow \frac{13(x+3)}{(x-3)(x+3)(2x+7)}+\frac{x^2-9}{(x-3)(x+3)(2x+7)}=\frac{6(2x+7)}{(x-3)(x+3)(2x+7)}\)

\(\Rightarrow 13(x+3)+x^2-9=6(2x+7)\)

\(\Leftrightarrow 13x + 39 + {x^2} – 9 = 12x + 42\)

\(\Leftrightarrow {x^2} + x – 12 = 0\)

\(\Leftrightarrow {x^2} + 4x – 3x – 12 = 0\)

\(\Leftrightarrow x\left( {x + 4} \right) – 3\left( {x + 4} \right) = 0\)

\(\Leftrightarrow \left( {x – 3} \right)\left( {x + 4} \right) = 0\)

\(\Leftrightarrow \left[ \matrix{x-3=0 \hfill \cr x+4=0 \hfill \cr} \right.\)

\(\Leftrightarrow \left[ \matrix{x=3 \hfill \cr x=-4 \hfill \cr} \right.\)

Loại trường hợp \(x = 3\) vì không thỏa ĐKXĐ.

Vậy phương trình có nghiệm duy nhất \(x = -4\)

Lớp 8

Nội dung bài học được biên soạn và tổng hợp bởi thầy cô trường Chuyên Bắc Giang. Hy vọng đã giúp các em hiểu và biết cách giải câu hỏi: Giải câu 31 bài luyện tập sgk Toán 8 tập 2 trang 23

Đăng bởi: Trường THPT Chuyên Bắc Giang

Chuyên mục: Giáo Dục, Lớp 8

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *